## Lecture 8: Atomic Models, Bonding

A little more chemistry review... and then we will consider the chemistry of minerals in detail

#### **BOHR ATOMIC MODEL**

Orbital distances are quantized; electrons occur in discreet "shells", designated n = 1, 2, 3, ... = K, L, M... "Principle Quantum Numbers"

The lowest energy orbital is n = 1, and they increase in energy by  $1/n^2$ 

Jumps between shells are accompanied by emission/absorption of energy

 $E = hc/\lambda$ E = energyh = Plank's constantc = speed of light $\lambda = wavelength of absorbed/emitted radiation$ 



Bohr's model explains many, but not all observations

Problem: electrons display particle-wave duality De Broglie figured this out:

 $\lambda = h/mv$ 

v = velocity m = mass  $\lambda$  = wavelength of particle

Then Heisenberg figured out that atoms cannot be in elliptical orbits around the nucleus (uncertainty principle)

#### SCHRODINGER WAVE MODEL

- > a better atomic model
- relates the probability of finding an electron at a given time, in a given place, to the mass and potential energy of the particle at that time and place
- electrons are now treated as "mathematical wave functions"
- orbits become "clouds" of varying probability density



#### **Electrons are described by 4 QUANTUM NUMBERS:**

#### 1. PRINCIPAL QUANTUM NUMBER (n)

- "shell"; same meaning as in Bohr atomic model
- indicates mean radius of atomic orbital



FIG. 4.8 Relationship between principal quantum *n* and the number of half wavelengths in a standing wave. In solutions to the wave equation, nodes represent regions with no electron density (see Fig. 4.10).

# 2. AZIMUTHAL QUANTUM NUMBER (I) > "subshell" > indicates orbital shape (s, p, d, f...)



 MAGNETIC QUANTUM NUMBER (m)
 ➢ Indicates "orientation" of orbital (s has 1, p had 3, d has 5, …)

4. SPIN QUANTUM NUMBER (s)
▷ Defines electron spin (±1/2; up and down)
▷ indicates orbital shape (s, p, d, f...)



| SUMMARY OF THE<br>THREE QUANTUM<br>NUMBERS | Principal<br>Quantum<br>Number, n<br>(Shell) | Azimuthal<br>Quantum<br>Number, /<br>(Subshell) | Subshell<br>Designation | Magnetic Quantum<br>Number, m (Orbital)                            | Number of<br>Orbitals in<br>Subshell | Maxie<br>Numi<br>Elect | mum<br>ber of<br>trons |
|--------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------|--------------------------------------------------------------------|--------------------------------------|------------------------|------------------------|
|                                            | 1 (K)                                        | 0                                               | 18                      | 0                                                                  | 1                                    | 2                      | 2                      |
|                                            | 2 (L)                                        | 0                                               | 2s<br>2p                | 0<br>-1, 0, +1                                                     | 1<br>3                               | 2<br>6                 | 8                      |
|                                            | 3 (M)                                        | 0<br>1<br>2                                     | 3s<br>3p<br>3d          | 0<br>-1, 0, +1<br>-2, -1, 0, +1, +2                                | 1<br>3<br>5                          | 2<br>6<br>10           | 18                     |
|                                            | 4 (N)                                        | 0<br>1<br>2<br>3                                | 4s<br>4p<br>4d<br>4f    | $0 \\ -1, 0, +1 \\ -2, -1, 0, +1, +2 \\ -3, -2, -1, 0, +1, +2, +3$ | 1<br>3<br>5<br>7                     | 2<br>6<br>10<br>14     | 32                     |



 $\frac{f}{d} = \frac{p}{s}$   $\frac{f}{d} = \frac{p}{s}$ High energy è *p* <u>d</u> <u>p</u> <u>p</u> \_\_\_\_\_ Low energy \_8 3 | M n = 14 | |N 2 5 6 7 La Shells K 0 ١. P K+H(1999) Orbital energies

# To figure out how electrons go into the different types of orbitals, there are three rules...

#### **1. AUFBAU PRINCIPAL**

> available electrons fill orbitals from lowest to highest energy, so they fill shell 1 before shell 2 and so forth...

#### 2. PAULI EXCLUSION PRINCIPAL

no two electrons may have identical quantum numbers
 electrons in the same shell and subshell and orientation ("paired" electrons) must have opposite spin

> s has a max of 2 electrons; p has a max of 6 electrons

#### 3. HUND'S RULE

electrons in a given subshell (e.g. s, p, or f) distribute with spins in the same direction

That's it! These rules are enough to work out *electron configurations*.

#### **ELECTRON CONFIGURATIONS:**



 $1s^{2}2s^{2}2p^{6}$ 

Example 2. **SODIUM (Z = 11)**  $1s^{2}2s^{2}2p^{6}3s^{1}$   $1s^{1}$   $2s^{1}$   $2p^{1}$  $3s^{1}$ 

Example 3. **CHLORIDE (Z = 17)**  $1s^{2}2s^{2}2p^{6}3s^{2}3p^{5}$   $1s^{1}$   $2s^{1}$   $2s^{1}$   $2p^{1}$   $3s^{1}$   $3p^{1}$ 1 + 1

#### **BONDING:**

**Bond: electrical forces** that hold atoms of a solid together

Type of bond determines many physical properties (hardness, thermal conductivity, electrical conductivity...)

Note: most minerals have mixed bond types, but we can still categorize types of bonds.

We will consider 5 bonding types (2 very common, 3 of more minor significance in minerals)

#### 1. IONIC BOND

- One or more electron in valence shell is transferred to the valence shell of another atom
- "cation-anion" attraction
- Forms between elements on opposite sides of periodic table

 Ex. Na<sup>+</sup> + Cl<sup>-</sup> = NaCl (Halite) Na (1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>1</sup>) = (1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>) + e<sup>-</sup> Cl (1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>5</sup>) + e<sup>-</sup> = (1s<sup>2</sup>2s<sup>2</sup>2p<sup>6</sup>3s<sup>2</sup>3p<sup>6</sup>)

Note: ions have very different properties compared to the corresponding elements!!

Na = soft, shiny metal CI = green, acrid gas Na<sup>+</sup> + CI<sup>-</sup> = table salt! (halite)

#### 1. IONIC BOND

#### **Ionic Bond Strength (u):**

 $u = Aq^1q^2/r$   $q = charge on ion \quad A = constant (Madelung)$ r = distance between centers of bonded ions

#### Therefore, SHORTER Bonds = STRONGER Bonds

Example: NaF, r = 2.35Å NaCl, r = 2.83Å

Melting Point: 988°C Melting Point: 801°C

### **Properties of Ionic Bonds:**

- Moderate hardness
- > Fairly high melting temperatures
- Poor conductors (electrons don't want to move)
- High symmetry (nondirectional bonds)
- Highly soluble solids

#### **2. COVALENT BOND**

- "sharing" of electrons between atoms
- Forms between elements of similar electronegativity (close together on periodic table)
- Ex. Diamond (C) C (1s<sup>2</sup>2s<sup>2</sup>2p<sup>2</sup>); 4 electrons to fill shell; form 4 covalent bonds

Electronegativity: measure of atom's ability to attract electrons to outer shell

**E.N. up** as **Z up** across rows (more tendency to become anion on right-hand side of periodic table)

**E.N. down moving down columns** (outershell farther from nucleus)

#### **2. COVALENT BOND**

**Properties of Covalent Bonds** 

- Hard solids
- High melting temperatures
- Highly insoluble
- Poor electrical conductivity

Note: Although ionic and covalent bonds are the most prevalent in minerals, there are 3 other types of bonds...

#### **3. METALLIC BOND**

- Share electrons between many atoms
- "Sea" of electrons between transition metals
- Ex. Gold (Au)

#### **Properties of Metallic Bonds:**

- Soft solids
- Low melting temperature
- Excellent conductors
- > Malleable
- > Ductile

#### 4. VAN DER WAALS BOND

"Fleeting dipoles": neutral molecules develop uneven charge distributions (electrons 'synchronize' orbits to avoid each other)

Very weak bonds

Ex. Graphite (C)

#### **5. HYDROGEN BOND**

- $\succ$  "Electrostatic bond" between O<sub>2</sub>, N<sup>-3</sup> and H<sup>+</sup>
- Stronger than van der Waals bonds
- Ex. Bonding at mineral surfaces in aqueous solutions
- Ex. OH bearing silicates